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Abstract 

The proper vibrations of homogeneous and isotropic space are characterized by the 
autonomous conservative oscillation of spatial volume element. The conserved energy 
of oscillation is different from zero only when the space has positive curvature, and hence, 
it is closed. However, the oscillations of volume element of closed space imply the change 
in the signature of first metric form of space-time. This means that the metric actually 
has singular points. 

1. Introduction 

Finite space is in itself a natural and wall-less box which engenders 
atomicity of matter and light by the necessary discreteness of its proper 
modes of vibration (Edington, 1936; Schrrdinger, 1937). For  the finite 
space the different equations of mathematical physics which are of hyper- 
bolic type provide eigenvalue problems (see, for example, KulMnek, 1971, 
and references therein). The proper vibration of  homogeneous and iso- 
tropic space itself, described in the terms of components of metric field 
of  space-time, are considered by Kuhl~inek (1971). There are the differential 
equations for oscillation of distance between two points and the spatial 
volume element derived from field equations. 

The consequence of the field equation is the differential conservation 
law in the form of the general covariant continuity equation. It is well 
known that whenever the differential conservation law has the form 
mentioned above there is a conserved integral. Evaluation of this integral 
on a t = constant hypersurface gives the result that when the space is 
finite the conserved energy of spatial volume element oscillation is different 
from zero. For  space with zero and negative curvature this constant is 
zero. 

Oscillation of the spatial volume element of closed space is mathematically 
possible. However, it necessarily leads to change in the signature of the 
line element of space-time. The signature is changed periodically from 
+2 to - 2  during the evolution of the volume element, and there is a point 
where the scalar curvature of space-time becomes infinite. This means 
that the metric has singular points.  It is necessary, however, to keep in 
mind that only by a fuller investigation of  the field equations in the general 
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case of a nonisotropic space would it be possible to answer the question 
whether this property of the solution is just special property of the isotropic 
closed space, not holding for the real case, where the isotropy of the space 
can only be approximate. 

2. Conserved Integral 
From the field equation (Kulhfinek, 1966) 

R ~2 =-JR+ agt~ 
- ~ 4-ff~-] (�89 - -  XaJCb) (2.1) Rab -- "~ g.b --~ g.~ 

where ~ is the rest mass, h is Planck's constant and 2~ are the components 
of the unit normal 4-vector to the 3-surface of the de Broglie's wave we 
have conservation equations 

jr 

Because of 2"2bg,b = 1 we have from (2.2) that 

. ~2X ..] 

Because of identity 

(2.4) 

we have from Kulh~inek (1971) that 

~e'2 [2( 4 )xi= 0 (2.5) 
The scalar ~ [ R  +4(~'2/h2)], called the index function (Synge, 1937), 
describes a property of space-time which remains conserved during the 
evolution of space-time. It is clear that the index function ~/[R + 4(J4~2/h2)] 
depends on the components of metric field and its first and second deriv- 
atives. If we integrate the identity (Kulhlnek, 1966) over a 3-space on the 
boundaries of which ~/[R + 4(~a/h2)]2" vanishes, we get 

~ [ J ( R + 4-~z ) Yca]l, a/(-g) dx' dx 2 dx 3 

--dx 4 R + 4  .~4,k/(-g)dxl dx2dx3. (2.6) 
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Now, because of (2.5) we have from (2.6) that the quantity 

~ J ( R  + e~-~4)24 @(-g)dxl dx2 dx 3 (2.7) 

is a constant independent of x 4. 

3. Homogeneous and Isotropic Space 
If the unit normal 4-vector 2 a has components (0,0,0,1) and we use 

the Robertson-Walker metric 

ds 2 = (dx~ 2 - UZ(x 0) dw 2 (3.1) 

where U(x ~ is an arbitrary function and 

1 dw2 - 1 + k(r2/4) (dr2 + r2(d~2 § sin2 vadr (3.2) 

defines the 3-space of constant curvature k in which d w  2 > 0 for any two 
points, then, from (2.7) we obtain 

J ( R  + 4~z ) U3 f r2sin2~dO'd(~dr 
[1 +k(r2/4)] 3 = constant. (3.3) 

Here, ~/[R + 4(~g~2/h2)] and U 3 are functions of coordinate x ~ only and 
yyz = 24~2 is the rest mass. 

Denoting the quantity 
f rZsinZ~dv~d~dr 

[1 + k(r2/4)] 3 (3.4) 

by I we can transcribe (3.3) in the form 

J(R+4~-JY~2) U 3 _ constanti (3.5) 

On the other hand, from (2.3) we have 

and hence, 

4 d"{~z'l = ~2 (3.6) U 6 (R @- h2 ] 

where •2 is an integrating constant, which has been written by Kulh~nek 
(1971) as flz=-~W, where Wis the conserved energy of volume oscillation. 
On comparing (3.6) with (3.5) we see that fi2= constant//. Hence, the 
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constants W and f12 depend on the quantity I (3.5) which, as simple com- 
putation shows, is infinite for k = 0 and k < 0, and is finite for k > 0. 
Thus, writing 

3 constant 
W - (3.7) 

4 I 

we see that the energy of volume oscillation is zero for Euclidean and 
pseudo-spherical space. In both these cases the space-time has constant 
curvature R = -4 (~2 /hZ) .  

4. Oscillations of Spatial Volume Element 

From the form (3.1) follows that spatial volume element is proportional 
to U 3. If  we denote V -  U 3 then from field equation (2.1) we can write 
(KulMnek, 1971) that 

-12122 -L- 3 ~ 2  V 2 § 9kV4/3 - . z - h T  = W ( 4 . 1 )  

The results of the foregoing section are leading us to consider the integration 
of (4.1) for three different cases: k =  W=O; k < 0 ,  W = 0 ;  k > 0 ,  W # 0 .  
The case when k = 0 and W =  0 was, as a mathematically simple case, 
considered by KulMnek (1971). The second case, k < 0, W =  0, is con- 
sidered by Kulh~inek (1971) under the case k r O, W =  O. It is shown 
there that for real solution V of equation (4.1) we necessarily must have 
k < 0. So what remains is the case k > 0, W #  0. The relation V-= U 3 
enables us to rewrite (4.1) as 

U4[(dU~2~\~x~ § 51~2UZ--~ § K] = 2 W  (4.2) 

Introdtrcing a new independent variable dr = U -a dx ~ and writing U z =- y 
from (4.2) we obtain 

1 {dy] z 2 2 2 ~ Z y 3 _ 4  W ~ \ ~ ]  + ~ y  + ~ - ~ -  - g  (4.3) 

where we put k = 1/I z > 0. After differentiation, from (4.3), we get 

d2y 4 
~ y  + 2~.2 y z = 0 (4.4) 

dz 2 h 

The solution of (4.4) is discussed, for example, by Bradbury (1968). We can 
write 

y = B + A snZ(a'r) (4.5) 

where A, B and a are parameters and sn is a Jacobi function of modulus 
k. The potential function, as we see immediately from (4.3) is 

2 ~ 2  3 (4.6) 
4,(y) = ~y2 + 5 _ g y  
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Since the potential function is not symmetric, the average spatial volume 
element is not zero. The constant B in (4.5) provides a means of adjusting 
the average spatial volume element properly depending on the energy 
W. The location and value of the relative maximum of ~b(y) are 

h 2 8 h 4 
Yl = - 2 1 2 ~ 2  ; ~1 - 3/6~/~4 (4.7) 

The potential ~b has the value ~b 1 also at y = h21-2•  -z, and the zeros of 
~b are at y = 0 and y = 3y I. The turning points of periodic motion occur, 
as we see from (4.5), when snZ(a.c) = 1 and snZ(a'r) = 0, and are 

Y2 = A -~ B and Y3 = B 

As the energy W approaches the limiting value ~bl, the turning points 
approach 

Y2 = Yx or ---}Yl and Y3 ~ -~Yl or Yl (4.8) 

The limiting values of parameters A and B, therefore, must be 

h 2 h e h z h 2 
B = 1 2 ~  or  --2/2d/go2 ; A = - 3 f f - ~ 5  or 3ff-~- F (4.9) 

Thus we see that function (4.5) is changing its sign. With the same notation 
as above we can rewrite the element (3.1) as 

ds 2 = y(d.r 2 + dw 2) 

and we see that y is the conforming factor between the space-time with 
line element (3.1) and space-time with line element ds2= d.c 2 -  dw z. The 
change of sign of y means the change of signature of line elements (3.1). 
This means that the periodical changes of spatial volume element of closed 
space are accompanied with periodical change of signature of space-time 
line element. 

5. Conclusion 

The results of this paper, together with those of an earlier publication 
(KulMnek, 1971), show that, in the case of a homogeneous and isotropicat 
space periodic changes of spatial volume element are possible, without 
any difficulties, only when the space has negative curvature. However, this 
space is not closed and we cannot expect any result which will demonstrate 
discreteness of its vibration. 
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